Search results for "Seebeck coefficient"

showing 10 items of 60 documents

Synthesis and thermoelectric characterisation of bismuth nanoparticles

2009

An effective method of preparation of bismuth nanopowders by thermal decomposition of bismuth dodecyl-mercaptide Bi(SC12H25)3 and preliminary results on their thermoelectric properties are reported. The thermolysis process leads to Bi nanoparticles due to the efficient capping agent effect of the dodecyl-disulfide by-product, which strongly bonds the surface of the Bi clusters, preventing their aggregation and significantly reducing their growth rate. The structure and morphology of the thermolysis products were investigated by differential scanning calorimetry, thermogravimetry, X-ray diffractometry, 1H nuclear magnetic resonance spectroscopy, scanning electron microscopy, and energy dispe…

Materials scienceSettore AGR/13 - Chimica AgrariaNanopowderAnalytical chemistryEnergy-dispersive X-ray spectroscopyNanoparticlechemistry.chemical_elementBioengineeringSemimetal–semiconductor transitionBismuthDifferential scanning calorimetrySeebeck coefficientbismuthThermoelectric effectSettore CHIM/01 - Chimica AnaliticaGeneral Materials SciencenanotechnologyBismuth nanoparticleThermoelectric characteristicThermal decompositionSettore CHIM/05 - Scienza E Tecnologia Dei Materiali PolimericiGeneral ChemistryCondensed Matter Physicsthermoelectric propertiesAtomic and Molecular Physics and OpticsThermogravimetrychemistryModeling and SimulationMercaptide thermolysinanoparticlesJournal of Nanoparticle Research
researchProduct

Characterization of thermoelectric and thermogravimetric properties of conductive PEDOT:PSS films blended with SWCNTs and PVA

2019

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was blended with polyvinyl alcohol (PVA) and single-walled carbon nanotube (SWCNT) filler to form composites with thermoelectric properties. Studied samples were obtained by drop coating and solution casting methods. Thermoelectric measurements of PEDOT:PSS demonstrated that the addition of 5 wt. % SWCNTs increased the Seebeck coefficient value from 8.0 μV/K to 23.6 μV/K, while in the case of PEDOT:PSS/PVA blended with 5 wt. % SWCNT Seebeck coefficient value of 20.3 μV/K was achieved. Thermogravimetric analysis showed slight SWCNT effect on thermal stability of the investigated systems.

Thermogravimetric analysisMaterials science02 engineering and technologyCarbon nanotube010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesPolyvinyl alcoholCasting0104 chemical scienceslaw.inventionchemistry.chemical_compoundchemistryPEDOT:PSSChemical engineeringlawSeebeck coefficientThermoelectric effectThermal stability0210 nano-technologyIOP Conference Series: Materials Science and Engineering
researchProduct

Anomalous transport properties of the half-metallic ferromagnets Co 2 TiSi, Co 2 TiGe and Co 2 TiSn

2011

In this work the theoretical and experimental investigations of Co2TiZ (Z = Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is predicted for all three compounds with only two bands crossing the Fermi energy in the majority channel. The magnetic moments fulfill the Slater-Pauling rule and the Curie temperatures are well above room temperature. All compounds show a metallic like resistivity for low temperatures up to their Curie temperature, above the resistivity changes to semiconducting like behavior. A large negative magnetoresistance of 55% is observed for Co2TiSn at room temperature in an applied magnetic field of 4T which is comparable to the large negative magnetore…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsMagnetoresistanceGeneral MathematicsGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyAtmospheric temperature rangeFerromagnetismElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectCurieCurie temperaturePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
researchProduct

Structural Principles and Thermoelectric Properties of Polytypic Group 14 Clathrate-II Frameworks

2013

We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate-II polytypes is ten times smaller than the difference between the experimentally known 3C-Ge (α-Ge) and 4H-Ge polytypes. The thermoelectric properties of guest-occupied clathrate-II structures were investigated for compositions Na-Rb-Ga-Ge and Ge-As-I. The clathrate-…

Materials scienceCondensed matter physicschemistry.chemical_elementGermaniumThermoelectric materialsAtomic and Molecular Physics and OpticsCrystalCrystallographyThermal conductivitychemistrySeebeck coefficientThermoelectric effectAllotropyPhysical and Theoretical ChemistryAnisotropyta116ChemPhysChem
researchProduct

Thermoelectric properties of CoTiSb based compounds

2009

Several CoTiSb based compounds were synthesized and investigated on their thermoelectric properties. The aim was to improve the thermoelectric properties of CoTiSb by the systematic substitution of atoms or the introduction of additional Co into the vacant sublattice. The solid solutions Co1+xTiSb, Co1?yCuyTiSb and CoTiSb1?zBiz were synthesized. X-ray diffraction was used to investigate the crystal structure. The resistivity, the Seebeck coefficient and the thermal conductivity were determined for all compounds in the temperature range from 2 to 400?K. The highest figure of merit for each solid solution is presented. We were able to improve the figure of merit by a factor of approximately s…

Acoustics and Ultrasonicsbusiness.industryChemistryAnalytical chemistryAtmospheric temperature rangeCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOpticsThermal conductivityElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectX-ray crystallographyFigure of meritbusinessSolid solutionJournal of Physics D: Applied Physics
researchProduct

Multi-temperature synchrotron PXRD and physical properties study of half-Heusler TiCoSb.

2010

Phase pure samples of the half-Heusler material TiCoSb were synthesised and investigated. Multi-temperature synchrotron powder X-ray diffraction (PXRD) data measured between 90 and 1000 K in atmospheric air confirm the phase purity, but they also reveal a decomposition reaction starting at around 750 K. This affects the high temperature properties since TiCoSb is semiconducting, whereas CoSb is metallic. Between 90 K and 300 K the linear thermal expansion coefficient is estimated to be 10.5 × 10(-6) K(-1), while it is 8.49 10(-6) K(-1) between 550 K and 1000 K. A fit of a Debye model to the Atomic Displacement Parameters obtained from Rietveld refinement of the PXRD data gives a Debye tempe…

Materials scienceRietveld refinementAnalytical chemistryHeat capacityThermal expansionInorganic Chemistrysymbols.namesakeCrystallographyThermal conductivityElectrical resistivity and conductivitySeebeck coefficientsymbolsDebye modelPowder diffractionDalton transactions (Cambridge, England : 2003)
researchProduct

Itinerant half-metallic ferromagnetsCo2TiZ(Z=Si, Ge, Sn):Ab initiocalculations and measurement of the electronic structure and transport properties

2010

This work reports on ab initio calculations and experiments on the half-metallic ferromagnetic Heusler compounds ${\text{Co}}_{2}\text{Ti}Z$ $(Z=\text{Si},\text{ }\text{Ge},\text{ }\text{Sn})$. Aim is a comprehensive study of the electronic-structure and thermoelectric properties. The impact of the variation in the main group element $Z$ on those properties is discussed. X-ray diffraction was performed on the compounds and the lattice parameters are compared to other ${\text{Co}}_{2}$-based compounds. Hard x-ray photoemission measurements were carried out and the results are compared to the calculated electronic structure. The experimentally determined electronic structure, magnetic propert…

PhysicsCondensed matter physicsFerromagnetismAb initio quantum chemistry methodsElectrical resistivity and conductivitySeebeck coefficientLattice (order)X-ray crystallographyCurie temperatureElectronic structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

High Thermoelectric Power Factor Organic Thin Films through Combination of Nanotube Multilayer Assembly and Electrochemical Polymerization

2017

In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before…

NanotubeWorking electrodeNanocompositeMaterials science02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesLead telluridechemistry.chemical_compoundchemistryPEDOT:PSSPolymerizationSeebeck coefficientThermoelectric effectGeneral Materials ScienceComposite material0210 nano-technologyACS Applied Materials & Interfaces
researchProduct

Growth mechanisms and related thermoelectric properties of innovative hybrid networks fabricated by direct deposition of Bi2Se3 and Sb2Te3 on multiwa…

2020

Abstract Flexible thermoelectric generators are an emerging trend in the field of waste heat conversion, as well as wearable and autonomous devices. However, the energy conversion efficiency of the state-of-the-art flexible thermoelectric devices is too low for their wide application and commercialization. In this work, n- and p-type multiwalled carbon nanotube (MWCNT)-thermoelectric material hybrid networks that may become a promising building block for the fabrication of flexible thermoelectric devices are presented. The hybrid networks were fabricated by direct deposition of thermoelectric material (Bi2Se3, Sb2Te3) on the MWCNT networks using physical vapor deposition technique. Growth m…

NanotubeMaterials scienceRenewable Energy Sustainability and the EnvironmentMaterials Science (miscellaneous)Energy conversion efficiencyEnergy Engineering and Power TechnologyNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyThermoelectric materials01 natural sciences0104 chemical sciencesFuel TechnologyThermoelectric generatorNuclear Energy and EngineeringPhysical vapor depositionSeebeck coefficientThermoelectric effectThin film0210 nano-technologyMaterials Today Energy
researchProduct

Structure and Doping Determined Thermoelectric Properties of Bi2Se3Thin Films Deposited by Vapour–Solid Technique

2019

In this work, a simple catalyst-free vapour-solid deposition method was applied for controlled deposition of two types (planar and disordered) of continuous Bi 2 Se 3 nanostructured thin films on different (fused quartz/glass, mica, graphene) substrates. Characterisation of electron transport (type, concentration and mobility of the main charge carriers) and thermoelectric properties (Seebeck coefficient and power factor) showed that proposed in this work deposition method allows to obtain Bi 2 Se 3 thin films with power factor comparable and even higher than reported for the Bi 2 Se 3 thin films grown by molecular beam epitaxy technique. Power factor of the best obtained thin films can be …

Fused quartzMaterials scienceDopantDopingAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyComputer Science Applicationslaw.inventionlawSeebeck coefficientThermoelectric effectDeposition (phase transition)Electrical and Electronic EngineeringThin film0210 nano-technologyMolecular beam epitaxyIEEE Transactions on Nanotechnology
researchProduct